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Abstract

This paper investigates the generalized mixed Rayleigh–Liénard oscillator with highly nonlinear terms. Not restrict to

the number of limit cycles, this analysis considers mainly the number of limit cycle bifurcation diagrams of the system.

First, the singularity theory approach is applied to the first-order averaged approximation of the system with lower-order

nonlinear terms to reveal all possible bifurcation diagrams. By summarizing the generating rule and structural distinction

of different bifurcation diagrams, a numerical procedure is then developed. Calculation suggests that the number of

bifurcation diagrams increase very fast as the order of nonlinear terms. Lastly, numerical simulations are adopted to

approve the analytical results.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The periodic solutions of autonomous nonlinear dynamical systems are defined as limit cycles, which are
also described as the self-excited oscillations to distinguish them from oscillations induced by a time-
dependent forcing function. The limit cycles have been observed in a wide variety of biological, chemical,
electrical and mechanical systems. Most of the early history in the theory of limit cycles was stimulated by
practical problems displaying periodic behavior. Rayleigh [1] discussed the differential equation related to the
oscillation of a violin string. Following the invention of the triode vacuum tube, which was able to produce
stable self-excited oscillations with constant amplitude, the well-known differential equation which describes
this phenomenon was obtained by van der Pol [2]. Then, Liénard [3] generalized the van der Pol system as the
most famous class of differential equations. The Liénard equation, which is often taken as the typical example
of nonlinear self-excited vibration problem, can be used to model resistor–inductor–capacitor circuits with
nonlinear circuit elements. It can also be used to model certain mechanical systems which contain the
nonlinear damping coefficients and the restoring force or stiffness.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Limit cycles usually arise at a Hopf bifurcation in nonlinear systems with varying parameters. In mechanical
systems, the varying parameter is frequently a damping coefficient. Regular or normal limit cycles are
distinguished from large-amplitude limit cycles. Stable normal limit cycles are created at a supercritical Hopf
bifurcation with the limit cycle amplitude building up gradually from nought as the parameter is varied from
the Hopf bifurcation point. So they are also called small-amplitude limit cycles. In contrast, stable large-
amplitude limit cycles are either created at a subcritical Hopf bifurcation with finite amplitude or show a
sudden increase (jump) in amplitude after originating as a normal limit cycle at a Hopf bifurcation point.

The nonlinear dynamical systems can either be strongly or weakly nonlinear. Generally, the damping terms
are considered to be weakly nonlinear. So the restoring or stiffness terms determine whether the nonlinearity
of a system is strong or weak. For the weakly nonlinear oscillators, the weakly nonlinear terms are multiplied
by a small positive parameter e as an indication. Letting e ¼ 0 results the generating equations, and their
solutions are generating solutions. For strongly nonlinear oscillators, there are more than one generating
solutions or equilibriums. The limit cycles can exist both inside and outside the potential wells.

As a particular case of the second part of Hibert’s sixteenth problem [4], lots of papers discussed the possible
number of limit cycle of Liénard or generalized mixed Rayleigh–Liénard oscillator recently using the Jacobian
elliptic functions. Chen et al. [5,6] presented two elliptic function methods, the elliptic perturbation method and
the elliptic Linstedt–Poincare method, to calculate the higher-order approximations, which converge to the
exact equation of each limit cycle, for the equations with strong nonlinear stiffness. Garcia-Margallo and
Bejarano [7] applied the Jacobian elliptic functions with the generalized harmonic balance method for the
generalized mixed Rayleigh–Liénard differential equations with positive linear and nonlinear stiffnesses. They
showed that when the damping coefficient is of degree 4, there is either zero, one or two limit cycles around the
origin. They [8] also showed that the system with two potential wells can have six limit cycles. Zhang and Yu [9]
used the Melnikov and Petrov methods to study the limit cycles associated with a generalized codimension-3
Liénard oscillator. Local and global bifurcations for the surge oscillations in axial flow compressors and wing
rock oscillations in aircraft flight dynamics were discussed by Lynch and Christopher [10]. They developed an
algebraic method for determining the Liapunov quantities, to compute the maximum number of small-
amplitude limit cycles that can bifurcate within a small neighborhood of the system origin. Both the small-
amplitude and large-amplitude limit cycle bifurcations were discussed with considering the damping coefficient
is of degree 14. Application of secondary bifurcations to large amplitude limit cycles in axial flow compressors
and wing rock oscillations in aircraft flight dynamics were also analyzed by Ananthkrishnan et al. [11].

It is well known that as the bifurcation parameter is increased and then decreased, a hysteresis loop is formed
on branches of the smallest and the largest stable limit cycles through a series of saddle-node bifurcations (jumps).
More or less central stable limit cycles are not involved in the loop. Due to different bifurcation diagrams results
not only different hysteresis loops but also different number of limit cycles that can be encountered during normal
operation, the number of limit cycle bifurcation diagrams is worth to be investigated. To the authors’ knowledge,
this problem has seldom been dealt with for the systems with highly nonlinear terms.

Singularity theory developed in 1960s enables us to deal with various local static bifurcation problems
[12,13]. The theory comprises three parts, recognition, unfolding and classification by codimension. Applying
the singularity theory approach to bifurcation equations, the qualitative types of solution sets (i.e., bifurcation
diagrams) can be obtained. As a result, both the number of possible limit cycles and the number of possible
limit cycle bifurcation diagrams can be determined.

This paper investigates the generalized mixed Rayleigh–Liénard oscillator using the averaging method and
the singularity theory. Because the singularity theory approach can be only applied to the system with lower-
order nonlinear terms, the structural distinctions of different bifurcation diagrams are summarized and a
numerical procedure is then developed to calculate the number of limit cycle bifurcation diagrams of the
system with highly nonlinear terms. Numerical simulation is also adopted to approve the results.

2. Averaging procedure

Consider the generalized mixed Rayleigh–Liénard oscillator as

€xþ �f ðx; _x;mÞ _xþ gðx;mÞ ¼ 0 (1)
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where e is a small, positive parameter, and m is a set of k-parameters which characterize the dynamical system.
The weakly nonlinear terms, f and g, are generally even and odd degree polynomials, respectively,

gðx;mÞ ¼ xþ �ax3; f ðx; _x; mÞ ¼ lþ
Xn

i¼1

b2ix
2i þ c _x2

 !
(2)

where a, c and b2i are constants, and l is taken as the bifurcation parameter in bifurcation analysis. Generally
the damping coefficient is of degree 4, i.e., n ¼ 2. But in determining the number of limit cycles, the
possibilities when n ¼ 7 was studied as an example in Ref. [10].

To obtain the bifurcation equation, we apply the averaging procedure to Eq. (1). Rearrange (1), in
consideration of Eq. (2), in the following form [14]

€xþ x ¼ � �ax3 þ lþ
Xn

i¼1

b2ix
2i þ c _x2

 !
_x

" #
(3)

Transforming the dependent variable from x to A and y where

x ¼ A cos c; _x ¼ �A sin c; c ¼ tþ y

the standard form of the equation governing A and y is deduced as

dA

dt
¼ �

A

2
lþ

Xn

i¼1

b2iA
2ið1� cos 4cÞ � ð1þ cos 2cÞi�1=21þi þ cA2 sin4 c

" #

dy
dt
¼ �

3a

8
A3 þ �A

Xn

i¼1

b2iA
2ið1þ cos 2cÞi � sin 2c=21þi

" #
(4)

One finds that the cubic stiffness term, ax3, influences only the variation of the phase but not the amplitude of
response of the autonomous system (3). Using the Krylov– Bogoliubov first-order approximation:

A ¼ yþ �Uðt; y; gÞ þOð�2Þ

y ¼ gþ �V ðt; y; gÞ þOð�2Þ (5)

where y and g represent the first-order approximate solution of A and y in steady-state, respectively. The
second equation of (4) can be ignored for it does not influence the possible limit cycles. The right-hand sides of
the first equation of (4) is averaged over c from 0 to 2p (assuming y and g are constants), which results

dy

dt
¼

y

2
lþ

Xn

i¼1

d2iy
2i

 !
(6)

where d2 ¼ (b2+3c)/4, d4 ¼ b4/8, d6 ¼ 5b6/64, d8 ¼ 7b8/128, d10 ¼ 21b10/512, d12 ¼ 33b10/1024 and
d14 ¼ 429b14/16384. The steady-state response of the averaged system (6) can be obtained by setting
dy/dt ¼ 0, which yields the following bifurcation equation

Gnðy; l;GÞ ¼ y2nþ1 � lyþ
Xn�1
i¼1

aiy
2i

 !
y ¼ 0 (7)

where G ¼ {ai}: ai ¼ d2i/d2n, i ¼ 1, 2,y, n�1 (without loss of generality, suppose d2na0).

3. Singularity theory approach

For cases np4, the bifurcation of Eq. (7) can be investigated by the singularity theory. Taking l as the
bifurcation parameter and G ¼ {ai} the unfolding parameter space, Eq. (7) is proven to be a (n�1)-parameter
(nX2), Z2-symmetric universal unfolding of a family germs g ¼ y2n+1

�ly, with codimension n�1 (the number
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of parameters ai, i ¼ 1, 2,y, n�1). By defining u ¼ y2, Gn ¼ 0 can be written in the form

Gnðy; l;GÞ ¼ un � lþ
Xn�1
i¼1

aiu
i

 !
y ¼ 0 (8)

For the case ya0, all phenomena occur in pairs—whatever occurs at (y, l, G) is mirrored at (�y, l, G). Note
that y denotes the amplitude of response of the system. So only the case y40 can be taken as the actual result.
There are three sources of non-persistence, i.e., bifurcation, hysteresis, and double limit points, carry over to
ya0. In Table 1, equations of these three sources are listed as B1(Z2), H1(Z2) and D(Z2), respectively.

For the case y ¼ 0, a pitchfork occurs at l ¼ 0 from y ¼ 0. Analyzing the non-persistent behavior for the
pitchfork leads to a bifurcation and a hysteresis sets, B0(Z2) and H0(Z2), respectively, as also listed in Table 1.

It can be proven that the above five sets enumerate all the sources of non-persistence of bifurcations with
Z2-symmetry, and they compose the transition set S(Z2). Analytic expressions are derived using the formulas
for various components of S(Z2) for the 1, 2 and 3-parameter, Z2-symmetric universal unfoldings and are
given in Table 2. The transition sets in plane (a1, a2) and bifurcation diagrams, that is u changes with
bifurcation parameter l for a set of G, are given in Figs. 1 and 2, respectively. For (nX5�1)-parameter cases,
analytic expressions of transition sets are very complex and lengthy (except H0(Z2) which is always equal to
a1 ¼ 0) and difficult to deal with on planar space.

Two bifurcation diagrams of G2 ¼ 0, i.e. (1) and (2) in Fig. 2, represent the basic modes of bifurcation (i.e.,
normal Hopf bifurcations). The mode 1 indicates a super-critical Hopf bifurcation wherein a stable non-trivial
solution is created about the unstable equilibrium. The mode 2 indicates a sub-critical Hopf bifurcation
wherein an unstable non-trivial solution is created about the stable equilibrium, and a stable non-trivial
solution arises through a secondary bifurcation [11]. In other words, there is one non-trivial solution for the
mode 1 and there are two non-trivial solutions for the mode 2, respectively. For Gn ¼ 0 with nX3, all
bifurcation diagrams besides the two basic modes are generated from them through hysteresis (saddle-node)
bifurcations. As a hysteresis bifurcation results two solutions, one stable and another unstable, the largest
number of non-trivial solutions of Gn ¼ 0 can be acquired to be n through solving Eq. (8). For Gn ¼ 0
with odd n, bifurcation diagrams are generated from the mode 1 through (n�1)/2 times hysteresis bifurcations.
Table 1

Sources of nonpersistence of n-parameter Z2-symmetric bifurcations.

B1(Z2) ¼ {GARn|((u, l), u40 such that R ¼ Ru ¼ Rl ¼ 0 at (u, l, G)}
B0(Z2) ¼ {GARn|(l such that R ¼ Rl ¼ 0 at (0, l, G)}
H1(Z2) ¼ {GARn|((u, l), u40 such that R ¼ Ru ¼ Ruu ¼ 0 at (u, l, G)}
H0(Z2) ¼ {GARn|(l such that R ¼ Ru ¼ 0 at (0, l, G)}
D(Z2) ¼ {GARn|(u1, u2, l (u1au1, u1, u140), such that R ¼ uRu ¼ 0 at (u1, l, G) and (u2, l, G)}
S(Z2) ¼ B1(Z2)[B0(Z2)[H1(Z2)[H0(Z2)[D(Z2)

Table 2

Transition sets for the 1, 2 and 3-parameter, Z2-symmetric bifurcations.

Bifurcation equation B0(Z2) B1(Z2) H0(Z2) H1(Z2) D1(Z2)

G2 ¼ 0 | | a1 ¼ 0 | |

G3 ¼ 0 | | a1 ¼ 0 a1 ¼ a32=3, a2p0 a1 ¼ a32=4; a2p0

G4 ¼ 0 | | a1 ¼ 0 a1 ¼ 3a3u2 þ 8u3, a1 ¼ 3a3u1u2 þ 4u1u2ðu1 þ u2Þ

a2 ¼ �3a3u� 6u2, a2 ¼ �3
2
a3ðu1 þ u2Þ � 2ðu21 þ u1u2 þ u22Þ

u40 u1au2; u1; u240
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Fig. 1. The transition sets in plane (a1, a2) for 1, 2 and 3-parameter, Z2-symmetric universal unfoldings (G2, G3 and G4).

Fig. 2. Bifurcation diagrams corresponding to Fig. 1.
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For Gn ¼ 0 with even n, bifurcation diagrams are generated from the mode 2 through (n�2)/2 times hysteresis
bifurcations.

Most relevant articles study only the largest number of limit cycles (non-trivial solutions). In this paper, the
number of possible bifurcation diagrams of the generalized mixed Rayleigh–Liénard oscillator with highly
nonlinear terms will be discussed based on the singularity analysis for cases np4.

4. The number of limit cycle bifurcation diagrams

The bifurcation diagrams (4)a to (4)e in Fig. 2 are resulted as the unfolding parameters are differently valued
inside the area (4) in Fig 1.Though all of them have one stable trivial solution, two stable non-trivial solutions
and two unstable non-trivial solutions, their structures are actually topological different. In the following, we
use N(n) to denote the number of bifurcation diagrams of Gn ¼ 0. From Fig. 2 one finds that the bifurcation
diagrams of Gn ¼ 0 include all that of Gi ¼ 0, i ¼ 2, 3,y, n�1. Denoting the number of new arisen bifurcation
diagrams of Gn ¼ 0 as NW(n), one has N(n) ¼ N(n�1)+NW(n) or NðnÞ ¼ Nð2Þ þ

Pn
i¼3NW ðiÞ whereas

N(2) ¼ 2, which covers the modes 1 and 2 of Fig. 2. For example, one finds that NW(3) ¼ 2, which covers the
bifurcation diagrams (3)a and (3)b of Fig. 2, so N(3) ¼ N(2)+NW(3) ¼ 4. Further one finds that NW(4) ¼ 5,
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which covers the bifurcation diagrams (4)a through (4)e, so N(4) ¼ N(3)+NW(4) ¼ 9. In the following we
discuss the calculation of NW(n)s for cases nX5.

For all bifurcation diagrams of Fig. 2, the bifurcation point at the l axis is denoted as point 1. Ascending
along a non-trivial solution curve from the point 1, the hysteresis (or saddle-node) bifurcation points
encountered are denoted in sequence as point 2, 3,y, n, respectively. To calculate the number of bifurcation
diagrams, two facts are summarized below.
1.
Ta

Nu

Or

NW

RN
For the bifurcations of Gn ¼ 0 with even order n, all bifurcation points with odd numbers are left-turn
points. A solution branch below the left-turn point is stable and an upper one is unstable. Contrarily for
Gn ¼ 0 with odd order n, all bifurcation points with odd numbers are right-turn points. A solution branch
below the right-turn is unstable and an upper one is stable.
2.
 Projecting the bifurcation point i on l axis and denoting it as the projected point li (numerically li ¼ i), the
bifurcation diagrams can be distinguished by the distribution, or sequence, of the projected point li (i ¼ 1,
2,y, n). An important fact is that for any right-turn bifurcation point i, its projected point li locates in the
left side of, not inevitably next to, the projected points li�1 and li+1. Contrarily for any left-turn
bifurcation point i, its projected point li locates in the right side of, not inevitably next to, the projected
points li�1 and li+1.

Based on these facts, a numerical procedure is developed to calculate the number of bifurcation diagrams of
the generalized mixed Rayleigh–Liénard oscillator (1) with any highly nonlinearity, see the results listed in
Table 3 for n ¼ 4 to 8. Table 3 indicates that the number of bifurcations increase very fast as the order of
nonlinear terms. Some examples are also presented in Table 3 wherein the projected points li’s are arranged in
a descending order (i.e., from right to left) to compose the representative numbers, RNs. The bifurcation
diagrams with RN ¼ 516 324 for n ¼ 6 and RN ¼ 2 641 537 for n ¼ 7 are sketchily depicted in Fig. 3. The
bifurcation with RN ¼ 2 641 537 was also calculated numerically in Ref. [10] as a particular example of limit
cycle in highly nonlinear differential equations (the parameters value a ¼ c ¼ 0, b2 ¼ �90, b4 ¼ 882,
ble 3

mber of bifurcation diagrams and examples.

der n 4 5 6 7 8

(n) 5 16 61 272 1385

s 1342 21 435 132 546 2 641 537 15 327 864

3412 42 513 315 246 4 621 357 37 125 648

516 342 6 472 135 51 327 648

78 563 142

Fig. 3. Bifurcation diagrams of highly nonlinear systems. (a) RN ¼ 516 324 (n ¼ 6); (b) RN ¼ 2 641 537 (n ¼ 7).
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b6 ¼ �2598.4, b8 ¼ 3359.997, b10 ¼ �2133.34, b12 ¼ 651.638 and b14 ¼ �76.38. Note that in Ref. [10] the
bifurcation parameter a0 ¼ �l).

Fig. 3(b) shows that in the neighborhood of the normal Hopf bifurcation point l ¼ 0, there exist a stable
trivial equilibrium (when lo0) and four stable steady-state solutions in different levels (i.e., the limit cycles
with small- or large-amplitudes). The values of l and the initial conditions x0 and _x0 determine which solution
can be arrived at. To verify the bifurcation analysis, the system (3) was numerically integrated with different
values of l, x0 and _x0, see the time histories shown in Fig. 4. The 4th-order Runge–Kutta method was adopted
for the integrations. For the system (3), the period length of normal limit cycle is 2p, and the period lengths of
limit cycles with large-amplitudes should be longer than 2p. By setting the step-length to be 2p/100 and the
maximum error is estimated not larger than 10�8, all solutions were determined exactly.

Referring to Fig. 3, Fig. 4 reflects the following phenomena.
1.
Fig

0.2
As the bifurcation parameter l is increased and then decreased, a hysteresis loop (outer-loop) is formed on
the branches of the smallest and largest stable limit cycles. Fig. 4(a)–(d) and back to 4(a) approve such an
outer-loop. From Fig. 4(a) with l ¼ �0.5 and x0 ¼ 0.5 (let _x0 ¼ 0:1 for all cases), one finds that the trivial
equilibrium is stable under relative small initial disturbance before the normal Hopf bifurcation is occurred.
As l increases, a normal Hopf bifurcation results the smallest-amplitude limit cycle (i.e., the first level stable
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non-trivial solution with amplitude being about 0.25), then a hysteresis bifurcation happening at the point 3
results a jump to the largest-amplitude limit cycle (i.e., the fourth level stable non-trivial solution with
amplitude being about 1.74), see Fig. 4(b) and (c). Note that in these two cases, the rather small initial
conditions means the trivial equilibrium is unstable. As l is decreased but before the hysteresis bifurcation
happens at the point 7, the system stays at the largest stable limit cycle branch all through, see Fig. 4(d) with
comparatively larger initial condition (x0 ¼ 1.6). As l is decreased lower than the point 7, the system will
return back to the stable trivial equilibrium.
2.
 Generally, more or less central stable limit cycles are not involved in the outer-loop. So these limit cycles
cannot be encountered during the system’s normal operation. Whereas an enough disturbance can lead the
system reach to these limit cycle branches. Fig. 4(e) and (f) illustrate the realizations of two middle limit
cycles (i.e., the second level and the third level stable non-trivial solutions with amplitude being about 1.23
and 1.58, respectively) under rather large initial conditions at l ¼ 0.05.
5. Conclusion

The generalized mixed Rayleigh–Liénard oscillator with highly nonlinear terms has been investigated in this
paper. Singularity theory approach is applied to the first-order averaged approximation of the system with
lower-order nonlinear terms. Analyzing the limit cycle bifurcation diagrams shows that they are generated
from two basic ones, the sub- and super-critical Hopf bifurcations, through hysteresis bifurcations. Different
bifurcation diagrams can be structural distinguished from the difference of the projected positions of
hysteresis points on the bifurcation parameter axis. Based on this rule, a numerical procedure was developed
to calculate the number of bifurcation diagrams of the system with any highly nonlinearity. Calculations
suggest that the number of bifurcation diagrams increase very fast as the order of nonlinear terms. Numerical
simulations approve the analytical results by presenting both the hysteresis loop between the smallest and
largest stable limit cycles as the bifurcation parameter is increased and decreased and realizations of the
middle limit cycles under certain initial conditions.
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